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A GAS EJECTOR SYSTEM AND A DIFFERENTIAL EJECTOR

V. A. Malanichev UDC 533.697.5

1. Introduction. A theoretical investigation is conducted on the efficiency of using
a system of gas ejectors with cylindrical mixing chambers and the limiting case of this sys-
tem — the differential ejector. Mixing is examined for gases with equal stagnation tempera-
tures and identical physical characteristics. The process of mixing gases in a differential
ejector was first investigated in [1], where an error in the solution of the system of
equations led to the loss of one condition of optimizing each stage of the differential ejec-
tor.

Here this error is corrected and the solution to the problem of a differential ejector
is presented.

The transition from a single-stage ejector with a cylindrical mixing chamber to a sys-
tem of sequential ejectors with cylindrical mixing chambers (Fig. 1) can improve the char-
acteristics of a single stage ejector. The improvement is possible for two reasons. First,
the differential mixing process can prolong the formation of the critical regime [1-3],
which leads to a more efficient operation of the ejector. Second, differentiation increases
the number of variable parameters in the ejector design, which can improve the efficiency
of the mixing process. Here we investigate the effect only of the last factor; that is, it
is assumed that the critical regime does not prevent optimization of the mixing process in
each of the ejectors of the system. This approach is correct, because the effect of forming
the critical regime is practically uncoupled with the ejector design specifics [1].

2. Optimization Criteria for a Single-Stage Ejector. We will examine mixing in an
ejector with a cylindrical mixing chamber for two gases with identical physical character-
istics ¢y, k, and stagnation temperature T,. The total pressures are py; and pgy,; the mass
flow rates are G; and G,, where p;; < py,. The gases are totally mixed in the chamber and
there are no losses. In this case, the laws of conservation of mass flows, momenta and en-
ergies for a cylindrical mixing chamber are [4]

1

Pom = 7 - T ) (2.1)
? M( Pt () T Ppq (1) )
2(hm) = 112(A) + V22(Ra), (2.2)

where z(h) = A + /A, q(}) =% (1_:%1x2)"(“_1), Y1 = G/(Gy F Go)i ¥, = Gl(G, + G;), and poy is the
total pressure of the gas mixture. From Eq. (2.2) it follows that for given values of the

reduced velocities A; and A, there are two values of the reduced velocity of the gas mixture
Ap- One of these corresponds to the subsonic velocity of the gas mixture (A = Apg < 1) and
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the other to the supersonic velocity of the gas mixture (Ap = Ay > 1). It is known that
for Ay = Apg, the following conditicn

2.
Ay = 1, Posti(he) = Domii(hn) (2.3)

.. N —1 /%~
is fulfilled when the ejector operation is optimized [1], where (”(A)zz(i_—quIkﬂ“(% D) The
value of Popgs which corresponds to this condition, and A, are determined from the system
(2.1) and (2.2). TFor Ay = Apy, the optimum operation of the ejector corresponds to the con-
dition

Ay = Ay By = Ay (2.4)
(he =V (x+ D)J(x—1)). Here
— 1 2.5)
Pom = X 7, RI(A—1) (
[+ )

Physically, the subsonic value Apy corresponds to operating the ejector with an ideal
subsonic diffuser, and the supersonic value Ay, to operating the ejector with an ideal
supersonic diffuser. By ideal, we mean the ability to establish the total flow pressure in
the diffuser without losses.

3. The Optimum Ejector System. In the ejector system, the gas mixture from the pre-
ceding stage is one of two working gases in the following stage. From Eq. (2.1) it follows
that

dpom/@pe; > 0, dpom/dpes > 0.

Therefore in the optimum ejector system each ejector should operate in the optimum regime.

We now examine the operation of a system of two ejectors with subsonic flow of a mix-
ture of gases in the end of the mixing chamber of each ejector. Let the low-pressure gas
G, enter the system in two parts: G,; = aG; in the first injector and G;, = (1 — a)G; in
the second. A typical dependence of the total pressure of the gas mixture for the system
of ejectors in this case pgop(a)/py; is shown in Fig. 2 (curve 1). The calculation was done
with .py,/pe1 = 50, vi/y, =1, and « = 1.4. From the calculated results it follows that the
mass separation of the low-pressure gas decreases the total pressure of the mixture com-
pared to a single-stage ejector. Let the high-pressure gas G, enter the system in two parts:
G,; = aG, in the first injector and G,, = (1 — a)G, in the second. A typical dependence
Pom(@)/po1 for this case is also shown in Fig. 2 (curve 2). It can be seen that the mass
separation of the high-pressure gas increases the total pressure of the mixture. It can be
shown that when two gases with identical physical characteristics and identical stagnation
temperatures are mixed, only the separation of the input of the high-pressure gas, inde-
pendent of the ratios py,/pe; and v;/Y,, leads to an increase of the total pressure of the
gas mixture, This proof is omitted because of its complexity. If we also replace one of

the two ejectors by two ejectors, we obtain a further increase in the total mixture pres-
sure in the ejector system.

Thus the problem of optimizing a system with an arbitrary number of ejectors is re-
duced to determining the optimum method of dividing the high-pressure gas among the ejectors
in the system. In a system with N ejectors, this problem is solved numerically by the method
of descent in the space of the (N — 1)-th coefficient of the specific mass flow of the gas
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N
ag = Gox/G,, k = 1,...,N, where %?ah==1. For a supersonic velocity of the gas mixture, the

transition from the optimum single-stage ejector to a system ejector does not change the
total pressure of the mixture, because the mixing of the gases occurs with a rate A, in
each ejector. This can be shown with the use of Eq. (2.5).

4. Differential Ejector. The differential ejector is the limiting case of a system of
N ejectors. Here the amount of high-pressure gas fed into each stage tends to zero and the
number of stages increases to infinity, such that the total amount of gas fed to the ejector
is finite. Then in each stage of the elementary ejector

¢
=1 v= dGz/(Gl + SdGz)-
b

In the transition to a differential ejector, the condition (2.3) takes the form
Ay =1, poni(hy) = ppit(hy), (4.1)

that is, in each stage the static pressure of the high-pressure gas is equal to the static
pressure of the low-pressure gas, which moves at the speed of sound. If the ejector operation
is optimized, the system of Eqs. (2.1) and (2.2) are transformed to

T ()
(M)

7" (1) 2 a6,  a()a(hy)
d7“2 + zq (1) (d;"‘m) _I— q(}vz)

G
6, + a6,
0

+ 0 (d6®) = 0; (4.2)

L (Bt = (2 () — D) — 2 1 0(a6).

2
G1+5dG2
0

(4.3)

G
We introduce the concept of the specific mass flow of the high-pressure gas n==5 dG,/G,.
0

Then the basic equation for the differential ejector follows from the system (4.2) and (4.3)
' (Ag)dAof [n(Ag)n(hy — 1)1 = dn/(1 + n). (4.4)

Hereafter, the reduced velocity of the high-pressure gas A,, the total mixture pressure pgp,
and the area of the mixing chamber F, will be taken as functions of the specific mass flow
n: pep(n), A(n), and Fyp(n). Equation (4.4) is solved by the method of separation of vari-
ables. After integrating, we obtain

(hye + }»2)1/[(u—1><x*+1)] (g — ;"2)1/[(:%—1)(7»*—1)] (Ag — 1) — 1i_ln, (4.5)

The constant C, is determined for n = 0 by the value of A,(0), which for (4.1) has the form
2,(0) = m7{w(1)*pe1/pPo2}. The function

o) = (A + 7\/)1/[(%—1)(7&*+1)] (hg — }»)—1/[(“—1)(7"*—1)](}» —1)

is a monotonically increasing function of its argument and increases from zero to infinity
as A grows from unity to the maximum value A,. Consequently, to each value of the function
¢(1) there corresponds a single value of the argument A. Then pop in the differential ejec-
tor for given pg,, Pgi1s and ny = G,/G, from (4.5) can be determined by calculating the value
of A,(n,) and substituting it into (4.1); that is

Pom = Poatt(Ay(ng))/mi(1). (4.6)

From the form of Egqs. (4.5) and (4.6), and also from the properties of the functions ¢(A)
and m()}), it follows that the total mixture pressure increases with increasing specific mass
flow n, of the high-pressure gas.

We now determine the equation for changing the area of the mixing chamber in the dif-
ferential ejector. In each elementary ejector, the differential area dFy consists of two
terms: dF, = dF; + dFp. The first term is equal to the area of the high-pressure gas noz-
zle dFf = su(A) Frdn/fin(1)g(A)(1+n)).; The second is equal to the constriction of the mixing
chamber after complete gas mixing, area of which is required to drive the gas mixture
through the input into the following ejector at the speed of sound:
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dFL = Fm-(]—jﬂw* (z(hy) — 2).

1z () (T+n)
Then
aF,, 4
Hzﬁ(i—-uag—n). (4.7)

From (4.7) it can be seen that for A, > (k + 1)/x the area of the mixing chamber decreases
for an optimum differential ejector, but increases for smaller values of XA,. As follows
from (4.1) and (4.5), A,(0) is determined by the pressure ratio p,,/p,: and the specific

mass flow n. For l%dpm,:>ﬁ(1V[ﬂ(£%%L)] the mixing chamber initially constricts with in-
creasing n, and then expands. As a result of solving Eq. (4.7), we find
€, (hy — hg)MICA=Dha=]
m= () (h + g V=D 0T (3 )’
Here the constant C, is determined for n = 0 by the values A,(0) and Fy(0).

Figure 3 shows the results of calculating the total pressure of the gas mixture in an
optimum system of ejectors pop(n)/py: for pga/pe1 = 50 and « = 1.4. Curve 1 corresponds to
a single-stage ejector, 2 to a system of five ejectors, and 3 to a differential ejector.

5.  Theory of the Differential Ejector [1]. Section 2 shows the results of solving
for the parameters of an optimum ejector in the general case of an arbitrary flow of high-
pressure gas into one stage. In going to a differential flow of the high-pressure gas, the
optimization criteria can be reduced to a simpler form, which was done in obtaining the con-
dition (4.1). But a qualitative change in the optimization criterion can not take place,
as was obtained in [1], because the condition A; = 1 for the optimum stage is not included
in [1]. Consequently, there is an error in the limiting transition. Now we will show what
it is.

First we note that instead of Eq. (2.2), which in the notation of [1] has the form
(1 -+ n + 8n)z(hn) = (1 4 n)z(hy) + Snz(hy),

where &n is the amount of the high-pressure gas entering the elementary stage, in [1] the
equation §[(1 + n)z(A,;)] = énz(),) was actually used. Thus, those solutions were excluded
where the supersonic flow at the mixing chamber input can correspond to subsonic flow of the

gas mixture which is formed by gas mixing at the shock front; that is, only the class of
continuous functions X;(n) was examined.

The actual error is as follows: in the system (2.1) and (2.2), initially the pressure
function of the mixture pyp(A;, A,, n + &n) is expanded in a series in én:

PomlMa, Ay, 1+ 8n) = pop(n) + A(Ay, A;)0n + O(8n?),

and then it is asserted that the conditions for an extremum in the function pOm(Al, Ay, n F
Sn) coincide with the conditions for an extremum in the function A(A;, A,) with an accuracy
on the order of dn. In the general case for an arbitrary function, this approach is not
valid. This can easily be seen using the function y{(x, én) = (1 + x-8n)? as an example.
Therefore, the wvalidity of this approach must be proven in each actual case. We will show

that the optimization conditions of each ejector stage was lost namely as a result of this
error in the limiting transition.

Fom.
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Let two bounded positive functions f(x) and g(x), which have continuous second-order
derivatives, be given in the region [0, a] (a > 1), where

g(1) =71(1) =0, g"(1) 0= f'(1). (5.1)

And let the function e(x, y, én) be given, which is defined by the following system of equa-
tions

o (@, 4, bn) = H—g: : (5.2)
(m + —g‘(y-)) g(2)
(1 + 8n)f(z) = f(z) + Onf(y) (5.3)

where 8n is a small parameter. The curves of the conditional extrema are determined by the
equations de(x, y, 8n)/dx = 0 for

& (z, y, n) (g'(x)_g'(z)f’(x))zo (5.4)
(_1_ JSL) £ L£EE
g () g

and 3e(x, y, 8n)/dy = 0 for
clandn (g0 _ g0/ 6) (5.5)
A N Ewm e )”’
(g(z)+g(y)) K

where the values of (%, y, 6n) and z are found from (5.2) and (5.3). From Eqs. (5.4) and
(5.5) it follows that the lines x = 1 and y = 1 are curves of conditional extrema of the
function e(x, y, én).

In the limiting transition én - 0, in the system (5.2) and (5.3), we obtain directly
that

. _ _gln  Juy—1&) g
be(z, y) = bn [1 g g@ f (x)}'

Thus, in order for the line x = 1 to satisfy the condition 3de(x, y)/9x = 0, it is necessary
that

(g" @) (%)) le=1 = 0- (5.6)

From the limitations (5.1) it follows that in the neighborhood of the point x = 1, the func-
tions g(x) and f(x) can be expanded in the series

glz) = gy + gy(x — 1 + gylz — 1 + o((x — 1)%),
flx) = fo + fale — 1 + falz — 1)° + o((z — 1)?).
Therefore Eq. (5.6) is equivalent to
8a/gs = filfs. (5.7)

Only in this case can the conditional extrema of the function e(x, y, §n) be obtained from
the main term of the expansion of e(x, y, 8n) in terms of the parameter én. If g(x) = q(X)
and f(x) = z()), then the condition (5.7) is not fulfilled. Therefore, in the limiting
transition én » 0, there is a loss of condition (4.1) for optimizing each stage of the dif-
ferential ejector.

In conclusion, we note that in the case where the combined operation of the diffuser
and the ejector is optimized by having a subsonic gas mixture flow out the ejector Alopt <
1, in [1] it is proposed that the velocity of the low-pressure gas be maintained at A;gnt
as an optimization criterion at the input to each elementary ejector. This is not valis.
Because the diffuser is located only after the final stage, A opt can be used only at the
output of the final stage. Therefore it is sufficient to make the mixing process nonopti-
mum (A; # 1) only in one or a few of the final stages.

LITERATURE CITED

1. B. A. Uryukov, "Theory of a differential ejector," Prikl. Mekh. Tekh. Fiz., No. 5
(1963).

832,



2.  Yu. K. Arkadov, "A gas ejector with a nozzle perforated with longitudinal slits," Izv.
Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2 (1968). '

3.  Yu. K. Arkadov, "Investigation of a gas ejector with a helical nozzle," Prom. Aerody-
namika, No. 30 (1973).

4. B. M. Kiselev, "Calculation of one-dimensional gas flows,'" Prikl. Mat. Mekh., 11, No. 1
(1947).

DYNAMIC STRAIN OF A CONDUCTING HALF SPACE WITH
A CAVITY IN A STRONG MAGNETIC FIELD

L. A. Fil'shtinskii and L. I. Fomenko UDC 539.3

The mechanical excitation of dia(para)magnetics in a static magnetic field creates an
induced (rotational) current inside the body, which leads to the formation of Lorentz body
forces, which are calculated by a tensor of Maxwellian stresses, which introduce large cor-
rections in the stress state of the body.

Below we examine a conducting elastic half space with tunnel cavities which is sub-
jected to mechanical excitation in a homogeneous static magnetic field. The corresponding
magnetoelastic problem is reduced to a singular integral equation, which is solved numeric-
ally with the use of the method of mechanical quadratures. Calculated results are pre-
sented, which characterize the stress concentrations at the contour of the cavity as a func-
tion of the configuration of the aperture, the magnitude of the applied magnetic field, and
the frequency of the excitation.

1. Basic Linear Magnetoelastic Equations and Formulation of the Problem. The total
system of magnetoelastic equations include [1-3] the equations of motion

9;0:; 4 0.E; + (i X B); = pdu,/ot* (i, j =1, 2, 3); (1.1)
Maxwell's equations

rot E 4 9B/t = 0, rot H — 4D/3t = §, div D = o,, div B = 0 {1.2)
and the material equations .

D =¢E + a(v X H), B = p,H — a(v X E), (1.3)
j:peV+G(E+V X B)voCZSHe — Sy,
Oy = 2pe; 1 Mjjenn, &1 = (1/2)(0;u; + duy),
0; = 8/0z;, v=20ujot (i, j, k=1,2,3)

The boundary conditions on the separation surface between two media have the form

[E+vXBlL =0,H—~vxD} =0, (1.4)
Bl, =0, [D], =0, [6(E + v X B) + p,v], = 0,
| o3 + tlny = Xiw (7, k=1, 2,3),
;= ED; + H;B; — (1/12)8; {ExDy, + BpH}).

Here E, D and H, B are the intensities and inductions, correspondingly of the elecitric and
magnetic fields; €, €, and ug, M, are the electric and magnetic permeabilities in the ma-
terial and in a vacuum; pg is the spatial density of the electric charge; j is the current
density; p is the density of the material; u; and o0j; are the mechanical displacements and
stresses; the X;j, are the components of the external surface load; y and A are the Lamé con-
stants; §;; is the Kronecker delta; and the symbol [ ] is a jump in the corresponding quan-
tity at the separation line of the media.

Let a static magnetic field H° act on a quiescent magnetoelastic medium. The external
excitation creates a body strain and the creation of an electromagnetic field which can be
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