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A GAS EJECTOR SYSTEM AND A DIFFERENTIAL EJECTOR 

V. A. Malanichev UDC 533 .697 .5  

i. Introduction. A theoretical investigation is conducted on the efficiency of using 
a system of gas ejectors with cylindrical mixing chambers and the limiting case of this sys- 
tem - the differential ejector. Mixing is examined for gases with equal stagnation tempera- 
tures and identical physical characteristics. The process of mixing gases in a differential 
ejector was first investigated in [i], where an error in the solution of the system of 
equations led to the loss of one condition of optimizing each stage of the differential ejec- 
tor. 

Here this error is corrected and the solution to the problem of a differential ejector 
is presented. 

The transition from a single-stage ejector with a cylindrical mixing chamber to a sys- 
tem of sequential ejectors with cylindrical mixing chambers (Fig. i) can improve the char- 
acteristics of a single stage ejector. The improvement is possible for two reasons. First, 
the differential mixing process can prolong the formation of the critical regime [1-3], 
which leads to a more efficient operation of the ejector. Second, differentiation increases 
the number of variable parameters in the ejector design, which can improve the efficiency 
of the mixing process. Here we investigate the effect only of the last factor; that is, it 
is assumed that the critical regime does not prevent optimization of the mixing process in 
each of the ejectors of the system. This approach is correct, because the effect of forming 
the critical regime is practically uncoupled with the ejector design specifics [i]. 

2. Optimization Criteria for a SinKle-Stage Ejector. We will examine mixing in an 
ejector with a cylindrical mixing chamber for two gases with identical physical character- 
istics c , ~, and stagnation temperature To. The total pressures are P0z and P02; the mass 

P 
flow rates are G I and G2, where P01 < P0z. The gases are totally mixed in the chamber and 
there are no losses. In this case, the laws of conservation of mass flows, momenta and en- 
ergies for a cylindrical mixing chamber are [4] 

I 
P~ ( Yl Y2 ); (2.1) 

q (~=) POlq (~t~ + Po, q (~2) 
z ( ~ )  = ~1z(~1) + ~z(~2), ( 2 . 2 )  

~ -- i - 2  \ ~I(• 
where z(%)=~+I/l, q(%)=I[I--~--~-7~ ) ,yI=GI/(GI~G~);?2 =GJ(G~+G2), and P0m is the 

total pressure of the gas mixture. From Eq. (2.2) it follows that for given values of the 

reduced velocities lz and 12 there are two values of the reduced velocity of the gas mixture 
Im" One of these corresponds to the subsonic velocity of the gas mixture (Im = Ams < i) and 

vff/ll/, , i i . . i  
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the other to the supersonic velocity of the gas mixture (i m = Imr > i). It is kno~m that 
for I m = Ims the following condition 

~ = t ,  po~(%~) = pom~(~m) ( 2 . 3 )  

is fulfilled when the ejector operation is optimized [ i] where (~ (~)= (i-- •  ~ ~2~•215 The 
, •  ] 

value of P0ms which corresponds to this condition, and I m are determined from the system 
(2.1) and (2.2). For I m = Imr, the optimum operation of the ejector corresponds to the con- 
dition 

%1=%*, %2=%* (2.4) 

(~ ,  = V (• + ~)/(• - t)).  Here 

( 2 . 5 )  

. ( •215 -~ p~X2-1)/• 

Physically, the subsonic value Ims corresponds to operating the ejector with an ideal 
subsonic diffuser, and the supersonic value Imr to operating the ejector with an ideal 
supersonic diffuser. By ideal, we mean the ability to establish the total flow pressure in 
the diffuser without losses. 

3. The Optimum Ejector System. In the ejector system, the gas mixture from the pre- 
ceding stage is one of two working gases in the following stage. From Eq. (2.1) it follows 
that 

@o.d@o~ > o,. @o.d@o2 > o. 

Therefore in the optimum ejector system each ejector should operate in the optimum regime. 

We now examine the operation of a system of two ejectors with subsonic flow of a mix- 
ture of gases in the end of the mixing chamber of each ejector. Let the low-pressure gas 
G I enter the system in two parts: Gzl = aGl in the first injector and G12 = (i - c~)G I in 
the second. A typical dependence of the total pressure of the gas mixture for the system 
of ejectors in this case P0m(~)/p01 is shown in Fig. 2 (curve I). The calculation was done 
with p0z/p0 l = 50, ~i/Y2 = i, and K = 1.4. From the calculated results it follows that the 
mass separation of the low-pressure gas decreases the total pressure of the mixture com- 
pared to a single-stage ejector. Let the high-pressure gas G 2 enter the system in two parts: 
G21 = ~G2 in the first injector and G22 = (I - a)G 2 in the second. A typical dependence 
P0m(a)/p01 for this case is also shown in Fig. 2 (curve 2). It can be seen that the mass 
separation of the high-pressure gas increases the total pressure of the mixture, lit can be 
shown that when two gases with identical physical characteristics and identical stagnation 
temperatures are mixed, only the separation of the input of the high-pressure gas, inde- 
pendent of the ratios P02/P01 and 7z/~2, leads to an increase of the total pressure of the 
gas mixture. This proof is omitted because of its complexity. If we also replace one of 
the two ejectors by two ejectors, we obtain a further increase in the total mixture pres- 
sure in the ejector system. 

Thus the problem of optimizing a system with an arbitrary number of ejectors is re- 
duced to determining the optimum method of dividing the high-pressure gas among the ejectors 
in the system. In a system with N ejectors, this problem is solved numerically by the method 
of descent in the space of the (N - l)-th coefficient of the specific mass flow of the gas 
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N 

=k = G2k/G2, k = i, .... N, where ~ah = i. For a supersonic velocity of the gas mixture, the 
1 

transition from the optimum single-stage ejector to a system ejector does not change the 
total pressure of the mixture, because the mixing of the gases occurs with a rate %, in 
each ejector. This can be shown with the use of Eq. (2.5). 

4. Differential Ejector. The differential ejector is the limiting case of a system of 
N ejectors. Here the amount of high-pressure gas fed into each stage tends to zero and the 
number of stages increases to infinity, such that the total amount of gas fed to the ejector 
is finite. Then in each stage of the elementary ejector 

~1=1 ,  ~2=dG~ G 1+ dG 2 . 

In the transition to a differential ejector, the condition (2.3) takes the form 

%1 = t ,  po~(%2) = poln(%l), (4.i) 

that is, in each stage the static pressure of the high-pressure gas is equal to the static 
pressure of the low-pressure gas, which moves at the speed of sound. If the ejector operation 
is optimized, the system of Eqs. (2.1) and (2.2) are transformed to 

~'(%2) d~2~ - q"(l) td% ~ dG~ q(t)~(%2) + O(dG~)=O; (4.2) 
~(E2) 2 ~ t  m, + 0 q(%2) 

G 1 ~ ~ dG2 
0 

2 = o ~ 0 (dG~). ( 4 . 3 )  
G1 ~ S riG2 

0 
G 

we i n t r o d u c e  t h e  c o n c e p t  o f  t h e  s p e c i f i c  mass  f l o w  o f  t h e  h i g h - p r e s s u r e  g a s  n =  S dG~/G1. 
0 

Then the basic equation for the differential ejector follows from the system (4.2) and (4.3) 

~'(~2)d~2/[~(%2)x(~2 -- l)]  = dn/(l ~- n). (4.4) 

Hereafter, the reduced velocity of the high-pressure gas ~2, the total mixture pressure P0m, 
and the area of the mixing chamber F m will be taken as functions of the specific mass flow 
n: p0m(n), %2(n), and Fm(n). Equation (4.4) is solved by the method of separation of vari- 
ables. After integrating, we obtain 

C a (~, + ~)~/t<~-~)<~,+~)j (~ ,  _ ~)I/E<~-~)(~,-~)1 ( ~  _ t) = l + ~" ( 4 . 5 )  

The c o n s t a n t  C z i s  d e t e r m i n e d  f o r  n = 0 by t h e  v a l u e  o f  ~ 2 ( 0 ) ,  wh ich  f o r  ( 4 . 1 )  h a s  t h e  fo rm 
~2(0) = ~-i{~(1)'p0i/P02}. The function 

9 (~) = (~* "~ ~)1/[(X--1)(~*+1)] (~ ,  - -  ~)--1/[(E--1)(%*--1)](~ - -  1) 

is a monotonically increasing function of its argument and increases from zero to infinity 
as A grows from unity to the maximum value ~,. Consequently, to each value of the function 
r there corresponds a single value of the argument %. Then P0m in the differential ejec- 
tor for given P02, P0i, and n o = G~/Gi from (4.5) can be determined by calculating the value 
of %=(n0) and substituting it into (4.1); that is 

Pore = po~(%~(no))/~(l). ( 4 . 6 )  

From the form of Eqs. (4.5) and (4.6), and also from the properties of the functions ~(~) 
and ~(~), it follows that the total mixture pressure increases with increasing specific mass 
flow no of the high-pressure gas. 

We now determine the equation for changing the area of the mixing chamber in the dif- 
ferential ejector. In each elementary ejector, the differential area dF m consists of two 
terms: dF m = dF~ + dF~. The first term is equal to the area of the high-pressure gas noz- 
zle dF~ = ~(l=)Fmdn/[~(])q(%=)(~ +n)].i The second is equal to the constriction of the mixing 
chamber after complete gas mixing, area of which is required to drive the gas mixture 
through the input into the following ejector at the speed of sound: 

830~ 



dFs = Fm q'~ (t) dn q (~) ~" (t) (t + ~> (z (~2) --  2). 

Then 

dfmfm = ~@_~+n (t _ _ d n  X (%2 -- t)). (4 .7)  

From ( 4 . 7 )  i t  can  be s e e n  t h a t  f o r  X2 > (K + 1 ) /K  t h e  a r e a  o f  t h e  m i x i n g  chamber  d e c r e a s e s  
f o r  an opt imum d i f f e r e n t i a l  e j e c t o r ,  b u t  i n c r e a s e s  f o r  s m a l l e r  v a l u e s  o f  12. As f o l l o w s  
f rom ( 4 . 1 )  and ( 4 . 5 ) ,  t 2 ( 0 )  i s  d e t e r m i n e d  by t h e  p r e s s u r e  r a t i o  P02/P01 and t h e  s p e c i f i c  

mass  f l o w  n.  For  Po~/Pol >~(1)/]~(-~2-)1 t h e  m i x i n g  chamber  initially constricts with in- 

creasing n, and then expands. As a result of solving Eq. (4.7), we find 

fm = C2(~*-  %2)1/[(~-1)(~*-1)1 
(~)  (x, + x~) 1/t(~-1>(~*+1)~ ( k ~ - 0 '  

Here  t h e  c o n s t a n t  C2 i s  d e t e r m i n e d  f o r  n = 0 by t h e  v a l u e s  ~ 2 ( 0 )  and Fm(0) .  

Figure 3 shows the results of calculating the total pressure of the gas mixture in an 
optimum system of ejectors P0m(n)/p0z for P02/P01 = 50 and K = 1.4. Curve 1 corresponds to 
a single-stage ejector, 2 to a system of five ejectors, and 3 to a differential ejector. 

5. Theory of the Differential Ejector [i]. Section 2 shows the results of solving 
for the parameters of an optimum ejector in the general case of an arbitrary flow of high- 
pressure gas into one stage. In going to a differential flow of the high-pressure gas, the 
optimization criteria can be reduced to a simpler form, which was done in obtaining the con- 
dition (4.1). But a qualitative change in the optimization criterion can not take place, 
as was obtained in [I], because the condition 11 = i for the optimum stage is not included 
in [i]. Consequently, there is an error in the limiting transition. Now we will show what 
it is. 

First we note that instead of Eq. (2.2), which in the notation of [i] has the form 

where  ~n i s  t h e  amount  o f  t h e  h i g h - p r e s s u r e  gas  e n t e r i n g  t h e  e l e m e n t a r y  s t a g e ,  i n  [1] t h e  
e q u a t i o n  5 [ ( 1  + n ) z ( t l ) ]  = 6 n z ( t  2) was a c t u a l l y  u s e d .  Thus ,  t h o s e  s o l u t i o n s  were  e x c l u d e d  
where  t h e  s u p e r s o n i c  f l o w  a t  t h e  m i x i n g  chamber  i n p u t  can  c o r r e s p o n d  t o  s u b s o n i c  f l o w  o f  t h e  
g a s  m i x t u r e  wh ich  i s  f o rm ed  by g a s  m i x i n g  a t  t h e  s h o c k  f r o n t ;  t h a t  i s ,  o n l y  t h e  c l a s s  o f  
c o n t i n u o u s  f u n c t i o n s  t l ( n )  was e x a m i n e d .  

The a c t u a l  e r r o r  i s  a s  f o l l o w s :  i n  t h e  s y s t e m  ( 2 . 1 )  and ( 2 . 2 ) ,  i n i t i a l l y  t h e  p r e s s u r e  
f u n c t i o n  o f  t h e  m i x t u r e  P0m(~ l ,  t a ,  n + 6n) i s  expanded  in  a s e r i e s  in  ~n: 

Po,~(%1, ~2, n + 6n) = pore(n) + A(~I, ~2)5n + 0(5n2), 

and then it is asserted that the conditions for an extremum in the function P0m(ll, 12, n + 
~n) coincide with the conditions for an extremum in the function A(II, 12 ) with an accuracy 
on the order of 6n. In the general case for an arbitrary function, this approach is not 
valid. This can easily be seen using the function y(x, 6n) = (i + x'~n) 2 as an example. 
Therefore, the validity of this approach must be proven in each actual case. We will show 
that the optimization conditions of each ejector stage was lost namely as a result of this 
error in the limiting transition. 

JO 
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Let two bounded positive functions f(x) and g(x), which have continuous second-order 
derivatives, be given in the region [0, a] (a > i), where 

g'( t )  =l'(J) = 0 ,  g"( l)=#=O:=~=]"(t) .  (5.1) 
And let the function e(x, y, 6n) be given, which is defined by the following system of equa- 
tions 

l + ~ n  ( 5 . 2 )  

(t + ~n)/(z) = f ix)  + 6n/(y) (5 .3)  

w h e r e  6n i s  a s m a l l  p a r a m e t e r .  The  c u r v e s  o f  t h e  c o n d i t i o n a l  e x t r e m a  a r e  d e t e r m i n e d  by t h e  
e q u a t i o n s  B e ( x ,  y ,  6 n ) / B x  = 0 f o r  

and 3e(x, y, 6n)/ay = 0 for 

s (x, y, 6,0 [g'  (~) g' (~) f' (:) ~ = 0 ( 5 . 4 )  
g~ (z) I' (z) ] 

8(x,y,~) (g'(y) g' (z)/' (y)) = 0 ' ( 5 . 5 )  
(.~_) 6n ) ~ (y) gU (z) l, (z ) 

where the values of r y, 6n) and z are found from (5.2) and (5.3). From Eqs. (5.4) and 
(5.5) it follows that the lines x = i and y = i are curves of conditional extrema of the 
function e(x, y, 6n). 

In the limiting transition ~n + 0, in the system (5.2) and (5.3), we obtain directly 
that 

5s(x, y ) =  5n[ l - -  g(x) (t (y)- / (~)) ~ (_/~)] g(y) g(x) i'(~)]" 

Thus, in order for the line x = 1 to satisfy the condition 3de(x, y)/3x = 0, it is necessary 
that 

(g' (x)~' (x))' I~=l = O. ( 5 . 6 )  

From the limitations (5.1) it follows that in the neighborhood of the point x = i, the func- 
tions g(x) and f(x) can be expanded in the series 

g(x) = go + g~(x - 1) 2 + g.(x  - 1)" + o((x - t)3), 

l(x) = Io + h ( x  - t) 2 + l . (x  - 1) 3 + o( (x  - 1)3). 

Therefore Eq. (5.6) is equivalent to 

gJg3 : /J/3.  (5.7) 
Only in this case can the conditional extrema of the function e(x, y, ~n) be obtained from 
the main term of the expansion of e(x, y, 6n) in terms of the parameter 6n. If g(x) = q(1) 
and f(x) = z(k), then the condition (5.7) is not fulfilled. Therefore, in the limiting 
transition 6n § 0, there is a loss of condition (4.1) for optimizing each stage of the dif- 
ferential ejector. 

In conclusion, we note that in the case where the combined operation of the diffuser 
and the ejector is optimized by having a subsonic gas mixture flow out the ejector klopt < 
i, in [i] it is proposed that the velocity of the low-pressure gas be maintained at klopt 
as an optimization criterion at the input to each elementary ejector. This is not valid. 
Because the diffuser is located only after the final stage, klopt can be used only at the 
output of the final stage. Therefore it is sufficient to make the mixing process nonopti- 
mum (k I ~ I) only in one or a few of the final stages. 
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DYNAMIC STRAIN OF A CONDUCTING HALF SPACE WITH 

A CAVITY IN A STRONG MAGNETIC FIELD 

L. A. Fil'shtinskii and L. I. Fomenko UDC 539.3 

The mechanical excitation of dia(para)magnetics in a static magnetic field creates an 
induced (rotational) current inside the body, which leads to the formation of Lorentz body 
forces, which are calculated by a tensor of Maxwellian stresses, which introduce large cor- 
rections in the stress state of the body. 

Below we examine a conducting elastic half space with tunnel cavities which is sub- 
jected to mechanical excitation in a homogeneous static magnetic field. The corresponding 
magnetoelastic problem is reduced to a singular integral equation, which is solved numeric- 
ally with the use of the method of mechanical quadratures. Calculated results are pre- 
sented, which characterize the stress concentrations at the contour of the cavity as a func- 
tion of the configuration of the aperture, the magnitude of the applied magnetic field, and 
the frequency of the excitation. 

i. Basic Linear Magnetoelastic Equations and Formulation of the Problem. 
system of magnetoelastic equations include [1-3] the equations of motion 

Maxwell's equations 

aj(si~ n t- peEi n t- (j x B)~ = pO~uJat ~ (,, ] = ~, 2, 3); 

rot E q- OB/Ot ---- 0, rot H - -  OD/Ot ---- j, div D = Pe, div B ----- 0 
and the material equations 

k, 

D = e E q - a ( v  • H ) , B  = ~ H - - o : ( v  • E), 

] = p ~ v + ~ ( E + v  • B ) , o ~ = ~  --%~o, 

crij = 2~*eij q- )~6ije~h, e i j =  (l/2)(Ojtti q- aiuj) , 

Oi=O/Oxi ,  v = a u l ~ t  (6 ], k = 1 , 2 , 3 ) .  

The b o u n d a r y  c o n d i t i o n s  on t h e  s e p a r a t i o n  s u r f a c e  b e t w e e n  two m e d i a  h a v e  t h e  f o r m  

The total 

(1.1) 

(1.2) 

( 1 . 3 )  

[E +v • B]~ =0, [H--v • D]~ =0, (1.4) 

[a]~ = 0 ,  [D]~ = 0 ,  [ ~ ( E - t - v  • B) + &v]~ = 0 ,  

Dij  + t~Anj = Xi= (i, y, k = t,  2, 3), 

tij = E iD:  + H~Bj - -  ( t /2)Si j (EkDk + B~Hk).  

Here E, D and H, B are the intensities and inductions, correspondingly of the electric and 
magnetic fields; s, s 0 and ~e, ~0 are the electric and magnetic permeabilities in the ma- 
terial and in a vacuum; Pe is the spatial density of the electric charge; j is the current 
density; p is the density of the material; u i and aij are the mechanical displacements and 
stresses; the Xin are the components of the external surface load; ~ and I are the Lame con- 
stants; 6ij is the Kronecker delta; and the symbol [ ] is a jump in the corresponding quan- 
tity at the separation line of the media. 

Let a static magnetic field H ~ act on a quiescent magnetoelastic medium. The external 
excitation creates a body strain and the creation of an electromagnetic field which can be 
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